Description
IntroductionThe USA has the highest rate of community gun violence of any developed democracy. There is an urgent need to develop feasible, scalable and community-led interventions that mitigate incident gun violence and its associated health impacts. Our community-academic research team received National Institutes of Health funding to design a community-led intervention that mitigates the health impacts of living in communities with high rates of gun violence.Methods and analysisWe adapted ‘Building Resilience to Disasters’, a conceptual framework for natural disaster preparedness, to guide actions of multiple sectors and the broader community to respond to the man-made disaster of gun violence. Using this framework, we will identify existing community assets to be building blocks of future community-led interventions. To identify existing community assets, we will conduct social network and spatial analyses of the gun violence episodes in our community and use these analyses to identify people and neighbourhood blocks that have been successful in avoiding gun violence. We will conduct qualitative interviews among a sample of individuals in the network that have avoided violence (n=45) and those living or working on blocks that have not been a location of victimisation (n=45) to identify existing assets. Lastly, we will use community-based system dynamics modelling processes to create a computer simulation of the community-level contributors and mitigators of the effects of gun violence that incorporates local population-based based data for calibration. We will engage a multistakeholder group and use themes from the qualitative interviews and the computer simulation to identify feasible community-led interventions.Ethics and disseminationThe Human Investigation Committee at Yale University School of Medicine (#2000022360) granted study approval. We will disseminate study findings through peer-reviewed publications and academic and community presentations. The qualitative interview guides, system dynamics model and group model building scripts will be shared broadly.